Presence survival spores of Bacillus thuringiensis varieties in grain warehouse

Sánchez-Yáñez Juan Manuel


Genus Bacillus thuringiensis (Bt) synthesized spores and crystals toxic to pest-insects in agriculture. Bt is comospolitan
then possible to isolate some subspecies or varieties from warehouse. The aims of study were: i) to isolate Bt varieties
from grain at werehouse ii) to evaluate Bt toxicity on Spodoptera frugiperda and Shitophilus zeamaisese iii) to analyze
Bt spores persistence in Zea mays grains at werehouse compared to same Bt on grains exposed to sun radiation. Results
showed that at werehouse were recovered more than one variety of Bt spores. According to each isolate Bt1 o Bt2 were
toxic to S. frugiperda or S. zeamaisese. One those Bt belong to var morrisoni. At werehouse these spores on Z. mays
grains surviving more time, while the same spores exposed to boicide sun radiation they died.


Amador RAL, Boschini FC. Fenología productiva y

nutricional de maíz para la producción de forrage.

Agron Mesoam. 2000; 11(1): 171-7.

Audtho M, Valaitis AP, Alzate O, Dean DH. Production

of chymotrypsin-resistant Bacillus thuringiensis

Cry2Aa1 δ-endotoxin by protein engineering.

Appl Environ Microbiol. 1999; 65

(10): 4601-5.

Benoit TG, Wilson GR, Bull DL, Aronson AI.

Plasmid-associated sensitivity of Bacillus thuringiensis

to UV light. Appl Environ Microbiol.

; 56(8): 2282-6.

De Amorim GV, Whittome B, Shore B, Levin DB.

Identification of Bacillus thuringiensis subsp.

kurstaki strain HD1-like bacteria from environmental

and human samples after aerial

spraying of Victoria, British Columbia, Canada,

with Foray 48B. Appl Environ Microbiol.

; 67(3): 1035-43.

De Maagd RA, Weemen-Hendriks M, Stiekema W,

Bosch D. Bacillus thuringiensis delta-endo to

xin Cry1C domain III can function as a specificity

determinant for Spodoptera exigua in

different, but not all, Cry1-Cry1C hybrids.

Appl Environ Microbiol. 2000; 66:1559-63.

Dulmage HT. Production of the spore-δ-endotoxin

complex by variants of Bacillus thuringiensis

in two fermentation media. J Invertebr Pathol.

; 16(3): 385-9.

Georghiou GP. Overview of insecticide resistance.

ACS Symposium series. American Chemical

Society (USA); 1990. p. 18-41.

Griego VM, Spence KD. Inactivation of Bacillus

thuringiensis spores by ultraviolet and visible

light. Appl Environ Microbiol. 1978; 35(5):


Guerchicoff A, Delécluse A, Rubinstein CP. The

Bacillus thuringiensis cyt genes for hemolytic

endotoxins constitute a gene family. Appl Environ

Microbiol. 2001; 67(3): 1090-6.

Smith RA, Couche GA. The phylloplane as a source

of Bacillus thuringiensis variants. Appl Environ

Microbiol. 1991; 57(1): 311-5.

Tabashnik BE, Liu YB, de Maagd RA, Dennehy TJ.

Cross-resistance of pink bollworm (Pectinophora

gossypiella) to Bacillus thuringiensis

toxins. Appl Environ Microbiol. 2000; 66(10):


Wirth MC, Delécluse A, Walton WE. Lack of crossresistance

to Cry19A from Bacillus thuringiensis

subsp. jegathesan in Culex quinquefasciatus

(Diptera: Culicidae) resistant to Cry

toxins from Bacillus thuringiensis subsp. israelensis.

Appl Environ Microbiol. 2001;

(4): 1956-18.


  • There are currently no refbacks.



Journal of the Selva Andina Research Society, ISSN: 2072-9294

Indexed in: SciELO

Teaching & Biochemistry and Microbiology Investigation Department.

Carmen Pampa Rural Academic Unit.

“San Pablo” Catholic Bolivian University

Coroico - Nor Yungas – La Paz, Bolivia.